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The advent of large-scale, complex computing systems has dramatically increased the difficulties of
securing accesses to systems’ resources. To ensure confidentiality and integrity, the exploitation of
access control mechanisms has thus become a crucial issue in the design of modern computing sys-
tems. Among the different access control approaches proposed in the last decades, the policy-based
one permits to capture, by resorting to the concept of attribute, all systems’ security-relevant informa-
tion and to be, at the same time, sufficiently flexible and expressive to represent the other approaches.
In this paper, we move a step further to understand the effectiveness of policy-based specifications by
studying how they permit to enforce traditional security properties. To support system designers in
developing and maintaining policy-based specifications, we formalise also some relevant properties
regarding the structure of policies. By means of some concrete examples, we present real instances
of such properties and outline an approach towards their automatised verification.

1 Introduction

The ever increasing diffusion of the Internet and the Web has fostered the development of large-scale,
complex computing systems. These modern distributed systems, that are pervading our everyday life,
produce and exploit a huge amount of data that are readily available through the underlying network
platforms. Given their importance and societal impact, it is of paramount importance to ensure that data
is accessed in a controlled way and that these systems behave in a secure way, e.g. not to compromise
sensitive data. For achieving this objective, some major challenges come from the fact that the operating
environment is highly dynamic and open, the involved entities are heterogeneous and possibly untrusted,
the interactions are complex and unpredictable, and the control is distributed.

In this setting, we believe that policy-based specifications can be used to regulate the behaviour of
entities relatively to the access to shared resources, thus ensuring systems security. Policies, that is sets
of declarative rules expressing what can(not) be done in a system, are indeed high-level abstractions that
can be used to define various aspects of systems behaviour. In particular, a security policy is a statement
that defines in which states a system is considered secure. A system is secure if starting from a secure
state it cannot enter a nonsecure one while computation progresses. The security of a state depends
on the behaviours the system exposes and, hence, on which guarantees a security policy managing and
controlling the system ensures. The enforcement of such a policy relies on a combination of various
approaches, ranging, e.g., from cryptography to access control, according to features and specificity of
the controlled system.

We focus on access control, usually considered the first line of defence in protection of computer sys-
tems, networks, and information. Access control is a broad field that covers several different approaches
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that enable the protection of systems by restricting physical and logical access rights of (authenticated)
subjects to shared resources. In practice, these approaches establish if a subject’s request to access a
resource should be permitted or denied according to some given access control rules.

Since their original introduction in the context of operating systems, to the more recently conceived
ones for modern distributed applications, many approaches for access control have been proposed in
the literature. Traditional approaches are based on the identity of the subject, either directly – e.g., Ac-
cess Control Matrix [18, 13] and its variants Capability Lists and Access Control Lists – or through
predefined attributes, such as roles or groups assigned to that subject – e.g., Role-Based Access Control
(RBAC [10]). In our frame of reference, these approaches are cumbersome to manage and not sufficiently
expressive, given the need to associate access rights to the requester qualifiers of identity, groups, and
roles that can change frequently and could not be known in advance. To overcome scalability problems
of these traditional access control approaches, an alternative is to use Attribute-Based Access Control
(ABAC [23]). Here, the authorisation decision is based on attributes, which represent arbitrary informa-
tion exposed by the system, subject, action, object, or the authorisation context itself that is relevant to the
rules at hand. Thus, ABAC permits defining fine-grained, flexible and context-aware access control poli-
cies, and fosters systems integration, as attributes can be retrieved from different information systems.
Attribute-based access control rules are typically hierarchically structured and paired with strategies for
automatic treatment of conflicting decisions and errors. These structured specifications are called poli-
cies; from this name derives the terminology Policy-Based Access Control (PBAC), sometimes used in
the literature in place of ABAC.

Approaches to access control can be classified also with respect to other features. For example, if we
consider resource ownership then we can distinguish between discretionary access control (DAC), where
subjects may decide who can access their own resources, i.e. the access control is at the discretion of the
owner, and mandatory access control (MAC), where the system decides who is allowed to access any
resource. In this respect, the access control matrix better fits the DAC approach, while RBAC and ABAC
can be used both for the MAC and DAC approaches. To conclude this overview of the relevant access
control approaches, on the base of the results in [16], we can say that ABAC is sufficiently expressive to
represent in an uniform way all the other approaches.

Controlling accesses to system resources concerns the three main security principles of confidential-
ity, integrity, and availability. Specifically, confidentiality refers to the assurance on non-disclosure of
sensitive resources to unauthorised subjects; integrity to the protection of resources from being altered by
unauthorised subjects; and availability to the enablement of the effective use of resources by authorised
subjects. As instantiations of these general principles, many security properties have been introduced and
studied (e.g., the Bell-LaPadula [3] and Biba [5] models). However, enforcing such properties by means
of access control policies is a tricky task. In fact, the hierarchical structure of policies, the presence of
conflict resolution strategies and the intricacies deriving from the many involved controls do not permit to
easily check whether a given security property is properly enforced. Therefore, in our work we consider
a general instance of the ABAC approach, i.e. the FACPL language [20], and study in details a set of
relevant security properties, presenting how they can be rendered in terms of policy-based specifications.

Policy-based specifications are formed by multiple rules and policies, and to characterise the re-
lationships with the behaviours they enforce, various properties on the structure of policies have been
proposed in the literature (e.g., change-impact analysis [11] and redundancy minimisation [14]). The
approaches used for defining and verifying these properties are different and cannot be uniformly repre-
sented. Therefore, in our work we focus on a set of relevant structural properties and propose a uniform
formalisation in terms of the FACPL semantics.

Furthermore, for providing a concrete support to the verification of both security and structural prop-
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Table 1: Syntax of a light version of FACPL

Policy Decision Points PDP ::= {Alg policies :Policy+}

Combining algorithms Alg ::= permit-overrides | deny-overrides | deny-unless-permit
| permit-unless-deny | first-applicable | only-one-applicable
| weak-consensus | strong-consensus

Policies Policy ::= (Effect target :Expr)
| {Alg target :Expr policies :Policy+}

Effects Effect ::= permit | deny

Expressions Expr ::= Name | Value | and(Expr,Expr) | or(Expr,Expr) | not(Expr)
| equal(Expr,Expr) | in(Expr,Expr) | greater-than(Expr,Expr)
| add(Expr,Expr) | subtract(Expr,Expr)
| divide(Expr,Expr) | multiply(Expr,Expr)

Attribute Names Name ::= Identifier/Identifier

Literal Values Value ::= true | false | Double | String | Date

Access Requests Request ::= (Name,Value)+

erties, we outline a constraint-based approach enabling automated verification by means of constraint
solver software tools. At the time of writing, this constraint-based analysis of policies is under develop-
ment; thus, in this paper, we just present main features and strengths of the approach.

The rest of the paper is organised as follows. Section 2 briefly reports main features of policy-
based languages and introduces the FACPL policy language. Section 3 presents the representation in
terms of policy-based specifications and the formalisation of a set of security properties, while Section 4
addresses policies’ structural properties. The verification approach, together with our proposal towards
an automated tool support, is sketched in Section 5. Finally, Section 6 reviews more strictly related
work and Section 7 concludes by touching upon directions for future work. Background definitions and
concepts on computer security used in rest of the paper are based on the well-known text books [6, 12].

2 A Policy Language

Policy languages for access control provide high-level abstractions for the specifications of declarative
sets of access control rules. Specifically, these languages allow systems’ designers to express structured
sets of attribute-based positive (resp. negative) rules granting (resp. forbidding) the access to systems’
resources. In this section, by informally introducing (a light version of) the policy language FACPL [20],
we detail all the typical features of access control specifications. The authorisation process that is pursued
to authorise or forbid an access request is outlined by means of a simple example.

2.1 Syntax and Informal Semantics of FACPL

The syntax of a light version of FACPL is reported in Table 1. It is given trough EBNF-like grammars,
where as usual the symbol ? indicates optional items and + indicates non-empty sequences of items.

The top-level term is a PDP, which is defined by a sequence of policies Policy+ and an algorithm
Alg for combining the results of the evaluation of these policies.
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A policy can be a basic authorization rule (Effect target :Expr) or a policy set
{Alg target :Expr policies :Policy+} collecting rules and (other) policy sets, so that it is possible to
define hierarchical policies. A rule specifies an Effect, i.e. permit or deny, indicating the rule-writer’s in-
tended consequence of a successful evaluation for the rule, and a target, i.e. an expression Expr defining
the applicability of the rule to a request. A policy instead specifies a target, a sequence of contained ele-
ments, i.e. rules or policies themselves, and an algorithm Alg for combining the results of the evaluation
of these contained elements.

A combining algorithm implements a strategy for resolving conflicts among the decisions resulting
from the evaluation of a collection of rules/policies, e.g. whenever both decisions permit and deny are
returned. We report below the strategies implemented by some of these algorithms.
• permit-overrides: if the processing of an element returns permit, then the result is permit,

i.e., permit takes precedence over any other decision. Instead, if at least one element returns
deny and all others return not-applicable or deny, then the result is deny. If all elements re-
turn not-applicable, then the result is not-applicable. In the remaining cases, the result is
indeterminate.

• deny-unless-permit: similarly to permit-overrides, permit takes precedence over deny, but it never
returns not-applicable or indeterminate, which are instead evaluated as deny.

• strong-consensus: it returns permit (resp., deny) only if all elements return permit (resp., deny).
If all elements return not-applicable then the result is not-applicable. Otherwise, it returns
indeterminate.

A target is an expression indicating the access requests to which a policy applies. Expressions are
built from attribute names and literal values, i.e. booleans, doubles, strings, and dates, by using standard
operators. As usual, string values are written as sequences of characters delimited by double quotes.
For simplicity sake, the expressions syntax does not take types explicitly into account; however, the
semantics of expressions returns an error if the arguments of operations have incorrect types. The latter
can be anyway managed by policies by resorting to appropriate combining algorithms.

An attribute name indicates the value of an attribute within an access request to authorise. Attributes
are expressed in terms of pairs name-value, where names are structured in the form cat/att, with cat
standing for a category name (as, e.g., subject, resource, action) and att for a specific name (as, e.g., id
and role). For example, the structured name subject/role represents the value of the attribute role within
the category subject.

An access request represents a subject willing to execute an action that has to be authorised. This
request holds all the attributes relevant for taking the authorisation decision, such as the information of
the subject originating the request and that of the requested action. A request sample of a subject sub,
which is assigned the role role1, that wants to read a resource res follows:

(subject/id,sub) (subject/role,role1) (resource/id,res) (action/id,read)

The evaluation of a request with respect to a policy results in one decision among permit, deny,
not-applicable, and indeterminate. The meaning of the first two decisions is obvious (i.e., granting and
forbidding the access, respectively), while the third means that there is no policy that applies to the
request and the fourth means that some errors occur in the evaluation.

By way of example, to regulate accesses to a resource res, we might use the following policy

{deny-unless-permit
target : equal(resource/id,res)
policies : (permit target : equal(action/id,read) and equal(subject/role,role1))}
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The evaluation of the previous request with respect to the policy above starts by evaluating the policy’s
target, i.e. the boolean expression after the first keyword target. Since the request satisfies the equal
comparison function, the evaluation carries on with the enclosed rule. The rule’s target is satisfied as
well and the decision permit is returned. Then, the combining algorithm applies to the resulting set of
decisions, which in this case only contains the permit one, and returns the final decision for the policy,
i.e. permit. Notice that the policy does not authorize requests not exposing the value role1 as a role
and that the remaining requests are granted only if they ask for read operations. Also notice that should
the policy’s target not apply to a request, then not-applicable would be immediately returned without
evaluating the enclosed rule and applying the combining algorithm.

2.2 A glimpse of the FACPL Formal Semantics

In this section, we briefly outline the formal semantics of FACPL (we refer the interested reader to [20]
for a full account). The semantics is defined by following a denotational approach, which means that

• we introduce some semantic functions mapping each FACPL syntactic construct to an appropriate
denotation, that is an element of a semantic domain representing the meaning of the construct;

• the semantic functions are defined in a compositional way, so that the semantic of each construct
is formulated as a function of the semantics of its immediate sub-constructs.

To this purpose, for each FACPL syntactic category, we specify the semantic domain into which the
syntactic constructs map and define the semantic function [[ ]] by giving its domain and codomain, and
by using semantic clauses to specify, inductively on the syntactic constructs, how the function acts on
each construct. Thus, if P stands for a FACPL policy, [[P]]r corresponds to the decision resulting from the
application of the semantic function to (the syntactic object) P and (the semantic object) r representing
an access request.

A FACPL request, in order to be evaluated, is represented in its functional form. This is a function
r belonging to the set R , Name→ (Value∪ 2Value∪{⊥}) containing all those total functions mapping
attribute names (i.e., the structured names in the syntactic domain Name) to either values, or set of values,
or the special value ⊥ (modelling the fact that an attribute name is missing).

The semantics of a policy is then a function that, given a request, returns an authorisation decision.
Formally, it is a function of the form R→ Decision, where Decision corresponds to the semantic (and
syntactic) domain of authorisation decisions. To define the semantics of policies we use two clauses, one
deals with rules, the other one with policies. For a generic rule (e target :expr ), its semantics is given
by the following clause:

[[(e target :expr )]]r =


e if [[expr]]r = true

not-applicable if [[expr]]r = false ∨ [[expr]]r = ⊥
indeterminate otherwise

where [[expr]]r is the value returned by evaluating the target expression expr with respect to the request r.
Thus, the rule’s decision is returned when the target evaluates to true, which means that the rule applies
to the request. Otherwise, it could be the case that the rule does not apply to the request, i.e. when the
target evaluates to false or to ⊥ (which means that the target is an attribute name missing in the request),
or that an error has occurred while evaluating the target.

Since the clause for policies relies on the semantics of combining algorithms, we first introduce it.
For each combining algorithm, we use a two-dimensional matrix that, given two decisions, calculates
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Table 2: The two-dimensional matrix for the permit-overrides combining algorithm

d1\d2 permit deny not-applicable indeterminate

permit permit permit permit permit
deny permit deny deny indeterminate
not-applicable permit deny not-applicable indeterminate
indeterminate permit indeterminate indeterminate indeterminate

the resulting combined one; then, by means of an iterative application of this matrix, we can define the
decision returned by the algorithm when given as input a sequence of decisions (each resulting from the
evaluation of a policy or a rule). For example, Table 2 reports the matrix for permit-overrides. Notably,
when a matrix takes into account the order of policy decisions (see, e.g., the matrix for first-applicable
in [20]), the combination is not associative.

Finally, for a generic policy {a target :expr policies :P+ }, where P+ stands for a non-empty se-
quence of policies or rules, its semantic clause is

[[{a target :expr policies :P+ }]]r =


e if [[expr]]r = true ∧ [[a(P+)]]r = e

not-applicable if [[expr]]r = false ∨ [[expr]]r = ⊥
∨([[expr]]r = true∧ [[a(P+)]]r = not-applicable)

indeterminate otherwise

where [[a(P+)]]r is the decision returned by evaluating the combining algorithm a on the sequence of
(decisions resulting from the evaluation of) policies or rules P+. Thus, the policy applies to the request
when the target evaluates to true and the semantic of the combining algorithm a (which is applied to the
enclosed sequence of policies and the request) returns a decision e, i.e. permit or deny. In this case, the
resulting decision of the policy is e. Instead, if the target evaluates to false or to ⊥, or the combining
algorithm states that the contained sequence of policies is not applicable, the policy does not apply to the
request. In the remaining cases, an error has occurred and the decision is indeterminate.

3 Security Properties for Polices

Policy-based specifications are sufficiently flexible and expressive to permit addressing, even in a mixed-
up way, different security aspects. As stated in the Introduction, verifying whether a policy enforces a
given security property is not straightforward. Therefore, in this section, we first present the attribute-
based controls that the policy-based specifications must contain for ensuring various security properties.
Then, we exploit the semantics of policies to formalise under which conditions a policy properly enforces
such properties.

We start by providing a more precise definition of the three general security principles mentioned in
the Introduction. Given a controlled system, we let res ∈ Res, Sub′ ⊆ Sub and Act ′ ⊆ Act, where Res,
Sub and Act are respectively the set of resources, subjects and actions involved in the system’s operation.
Then, the three principles can be defined as follows:

• confidentiality: the resource res has the property of confidentiality with respect to subjects Sub′

and actions Act ′ if none of the subjects in Sub′ can execute actions in Act ′ on res;
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• integrity: the resource res has the property of integrity with respect to subjects Sub′ and actions
Act ′ if actions in Act ′ executed by subjects in Sub′ cannot alter the trustworthiness of res;

• availability: the resource res has the property of availability with respect to subjects Sub′ and
actions Act ′ if all subjects in Sub′ can execute all actions in Act ′ on res.

It is worth noticing that the above principles could be naively instantiated by resorting to checks on
the identity of subjects. For example, when a subject whose identifier is s tries to access the resource res,
confidentiality could be achieved by denying the access to s if s ∈ Sub′. However, this requires to know
the identity of the requestor, as well as of all the other forbidden subjects, in advance. To overcome this
limitation, different instantiations of these principles have been proposed, which rely on the features of
subjects and resources for characterising the set Sub′ of (dis)allowed subjects. We present some of these
instantiations below, by focussing on the attribute-based controls necessary for expressing the wanted
features and checking specific security aspects.

Notably, from the access control point of view, the availability principle implies that the policy-based
specifications have to grant the access to a subject that exhibits all the required credentials. This goal is
achieved “by construction” in the proposed instantiations of the confidentiality and integrity principles,
hence we do not further insist on the availability principle.

3.1 Attribute-based Characterisation

We use attribute names of the form subject/∗, actions/∗ and resource/∗ to identify the characteristics
of a subject willing to perform a given action on a resource. For example, for a given access tentative,
action/id returns the identifier of the requested action, like e.g. read or write.

In the following attribute-based characterisation of the security properties, we rely on the commonly
used close-world assumption [27] of access control systems, which forbids all behaviours that are not
explicitly granted. We show in Section 5 how this assumption can be enforced using FACPL policies.

Confidentiality: multi-level security. The security policies commonly referred to as multi-level secu-
rity [3, 25] represent typical instantiations of the confidentiality principle and are also the formal basis
of the MAC approach. The goal of these kinds of policies is to prevent that a resource with a certain
confidentiality level be disclosed to a subject with a lower level. To this aim, each subject and resource
is assigned, through a function fL, a confidentiality level from a given partially ordered set < L,≤L> of
levels.

The Bell-LaPadula model [3] formalises these security policies in terms of some security properties
that must hold with respect to read and write actions. These properties are defined as follows:

• no read-up: a subject s can read a resource res only if the the security level of the subject dominates
the one of the object, i.e. fL(res)≤L fL(s);

• no write-down: a subject s can write a resource res only if the level of the subject s is dominated
by the level of the object, i.e. fL(s)≤L fL(res).

If we let the attributes subject/level and resource/level denote the confidentiality level assigned by
function fL to subjects and resources, respectively, then the previous properties can be characterised in
terms of policy-based specifications by the following rules:

(permit target : equal(action/id,read) and leq(resource/level,subject/level))

(permit target : equal(action/id,write) and leq(subject/level, resource/level))
(1)

where function leq corresponds to the partial order relation ≤L.
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The Bell-LaPadula model is usually extended to also consider DAC controls. For instance, if we use
access control lists as a DAC approach, these controls could be rendered by the following rule:

(permit target : equal(action/id,read) and in(subject/id, resource/read.ids)) (2)

where we assume that the attribute resource/read.ids returns the set of all subjects allowed to execute
the read action on the resource.

Integrity: separation of duty. The integrity principle regards various system aspects in addition to
accesses authorisation, like e.g. the trustworthiness of conveyance and storage means used by the system
to keep resources. Since we only focus on access control, we instantiate the principle in terms of the
Biba model [5] and the property of separation of duty.

The Biba model formalises integrity with respect to execution of read and write actions in terms of
integrity levels associated to subjects and resources. Assuming that the integrity levels are defined in the
same way as the confidentiality ones, the Biba model is the ‘dual’ of the Bell-LaPadula one in that it
relies on the no read-down and no write-up properties, which can be characterised as before.

An additional property that instantiates the integrity principle is separation of duty (SoD), which
was introduced in the Clark-Wilson model [8] and since then has been largely adopted to define secure
systems. In general, this property ensures that if two or more actions are required to perform a critical
transaction, then these actions must be performed by at least two different subjects. SoD is valuable in
deterring fraudulent behaviours, since no single subject has the possibility to perform complex actions,
but only well-defined, elementary actions.

A basic example of SoD is to prevent that an action be executed when a subject is assigned two roles
that are conflicting, i.e. there is no separation of duties among the actions that these roles permit. For
instance, if we assume roles role1 and role2 to be in conflict, we can define a rule that permits a read
action only when a subject exposes the first role but not the second one; the rule is as follows

(permit target : equal(action/id,read) and
in(role1,subject/role) and not(in(role2,subject/role)))

(3)

Indeed, the rule checks that the roles assigned to the subject, that are obtained through the attribute
subject/role, include role1, which is required for executing the read action, and not role2.

This last property is an example of static SoD, i.e. an integrity requirement that can be fulfilled by
evaluating a single access request. However, if we define SoD in terms of conflicting actions, rather than
in terms of conflicting roles as done before, checking a single access request is not adequate anymore
to enforce the intended property. Indeed, SoD could be easily circumvented by executing conflicting
actions in two or more attempts, as it is the case of a subject that is assigned, in two different instants
of time, different roles granting conflicting actions. To avoid that the subject be authorised to execute
both actions, we must resort to considering the previous actions it has performed, which is an example
of dynamic SoD. This kind of properties can be still addressed by using policy-based specifications, but
we need to use attributes for storing the history of the accesses previously performed by a subject. We
will provide further details on this aspect when discussing future work.

Role-based design: hybrid properties and least-privilege. The role-based design is a high level ap-
proach that permits to enforce confidentiality and integrity properties on the controlled resources at the
same time. It consists in assigning different roles to subjects within the system and using policies stating
what accesses are allowed to subjects depending on the roles they have. Although it is not an instantia-
tion of one of the three general security principles, we consider this approach explicitly since it is largely
used due to its better scalability with respect to other models, like e.g. the Bell-LaPadula and Biba ones.
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The basic characterisation of role-based controls in terms of policy-based specifications is straight-
forward: the attribute subject/role permits to define controls on the subject’s roles and Rule (3) is a
concrete example of this. However, the role-based approach takes also different, more complicated
forms [26], that exploit role hierarchies, i.e. a role inherits the privileges of the roles that are higher up
in the hierarchy, or constraints on role assignments, i.e. two conflicting roles cannot be assigned at the
same time. The former case can be rendered by exploiting the hierarchy of polices or an appropriate
ordering function, while the latter one by using an approach similar to that used for SoD properties.
The characterisation of role-based controls thus formalises a sort of ‘hybrid’ property, consisting of both
confidentiality and integrity aspects.

Let us consider an hybrid property stating that an action write can be executed by all the subjects
with assigned role role3, or by any other subject in the underlying role hierarchy which is not assigned
role role4 at the same time. Its characterisation in terms of attribute-based specifications can be defined
as follows:

(permit target : equal(action/id,write) and
sub-role(subject/role,role3) and not(in(role4,subject/role)))

(4)

where we use the ad-hoc function sub-role to check if the subject’s role is a sub-role of (or coincides
with) role3 and the additional control on role role4 to encode the integrity check.

A guideline commonly used in role-based design is least privilege. It means that each subject should
not expose more privileges than those necessary to perform the requested action. Differently from the
properties we have previously considered, least privilege is not implemented through specific rules.
Rather, it affects the design choices pursued for defining access control policies. We will present more
details in the semantic-based formalisation presented in the next section.

3.2 Semantic-Based Formalisation

A policy-based specification, as e.g. a FACPL policy, in addition to the rules previously presented, con-
tains many other elements, such as e.g. other rules implementing additional controls and conflict resolu-
tion strategies. We now formalise under which conditions a policy enforces a given security property.

The formal representation of a security property is obtained by exploiting the fact that an access
control request is an assignment of values to a collection of attributes. We can then use sets of requests to
represent the (non)secure system behaviours with respect to a given property. Formally, given a security
property pr, we let Rpr (resp., Rpr) be the permit (resp. deny) set, i.e. the set of requests that represent the
secure (resp., nonsecure) behaviours with respect to pr, and Subpr (resp., Respr) be the subset of subjects
(resp., resources) for which the property pr is defined. A policy P containing the rules characterising pr
correctly enforces such property if the following conditions hold

∀ r ∈ Rpr : r (resource/id) ∈ Respr , r (sub ject/id) ∈ Subpr ⇒ [[P]]r = permit

∀ r ∈ Rpr : r(resource/id) ∈ Respr , r(sub ject/id) ∈ Subpr ⇒ [[P]]r = deny

where notation r(attr name) indicates the value assigned to the attribute named attr name by the request
r. Hence, we require that all the secure behaviours are allowed (i.e., all the requests in Rpr evaluate to
permit) and all the nonsecure ones are forbidden (i.e., all the requests in Rpr evaluate to deny). Notably,
we consider the (non)secure behaviours that only refer to the subset of subjects and resources that the
property pr takes into account. This means that the set Rpr is not the complementary set of Rpr with
respect to the universe of all the possible behaviours of the system; rather it represents those behaviours
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that are considered nonsecure by the property pr. In the sequel we report the definition of the (non)secure
sets of requests for each property we presented before.

Confidentiality: multi-level security. The secure behaviours identified by the no read-up property
corresponds to the set of requests Rnru whose elements r must satisfy the following conditions

r(action/id) = read , r(resource/level) = l1 , r(subject/level) = l2 : l1, l2 ∈ L , l1 ≤L l2

The set Rnru instead contains those requests satisfying the following conditions

r(action/id) = read , r(resource/level) = l′1 , r(subject/level) = l′2 : l′1, l
′
2 ∈ L , l′1 6≤L l′2

The permit and deny sets for the no write-down property are similarly defined. In case of DAC properties
as e.g. that defined by Rule (2), the requests of the set Rdac are characterised by the following conditions

r(action/id) = read , r(resource/read.ids) = Subres , r(subject/id) = s : s ∈ Subres

where Subres is set of all subjects allowed to execute the read action on the resource res. Instead, the
elements of the deny set Rdac must satisfy the following conditions

r(action/id) = read , r(resource/read.ids) = Sub′res , r(subject/id) = s : s 6∈ Sub′res

Indeed, the set of granted subjects Sub′res does not contain the subject s.

Integrity: separation of duty. The no read-down and the no write-up properties, representing the Biba
model, are formalised like the confidentiality ones.

Let us consider the SoD property for a read action expressed by Rule (3). Thus, if Rol is the set of
authorised non conflicting sets of roles, i.e. all the sets contain role1 and not role2, the secure behaviours
Rsod are defined as follows

r(action/id) = read , r(subject/role) = rol : rol ∈ Rol

The non secure behaviours R′sod are instead defined as follows

r(action/id) = read , r(subject/role) = rol′ : rol′ ∈ Rolall\Rol

where the set Rolall represents the set of all sets of roles that a subject can play in the system. Thus, a
request is non secure when the set of subject’s roles does not contain role1, i.e. the subject has not the
right to execute the read action, or it contains role1 and role2 at the same time, i.e. the exposed roles are
in conflict.

Role-based design: hybrid properties and least-privilege. The secure and nonsecure behaviours iden-
tified by hybrid properties are just a combination of the previous examples. The formalisation of the least
privilege requires instead additional comments.

Let us consider a security property pr and the set of request Rpr representing the secure behaviours
with respect to such property. The sets of secure and nonsecure behaviours for the least privilege, with
respect to pr, are defined as follows

Rl p = Rpr Rl p = Rall\Rpr

where Rall indicates all the possible requests. Therefore, in order to enforce the least privilege, a policy
has to authorise all those behaviours of the system deemed as secure by the property pr and to forbid all
the other behaviours, not only those violating pr as in the previous cases. All the behaviours that are not
defined secure by pr are considered as nonsecure. Hence, forbidding them ensures that possibly granted
accesses cannot be used to circumvent, in a malicious way, other policies in the system.
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4 Structural Properties for Policies

We now address some of the properties proposed in the literature which refer to the structure of policies.
We start considering completeness of a single policy, after which we will consider redundancy, disjoint-
ness and coverage of one policy with respect to other ones. The properties dealing with multiple policies
capture the relationships among the different sets of system behaviours they enforce. In this section,
we report a uniform characterisation of these properties by means of the semantic-based approach used
before.

By referring to FACPL, we use P to range over policies, alg to range over combining algorithms and
d to range over authorisation decisions. Moreover, we use Rall to denote the set of all possible requests.

Completeness. A policy P is complete if there is no access request for which there is an absence of
decision. Formally, this property can be rendered through the following condition

∀ r ∈ Rall : [[P]]r 6= not-applicable

In fact, we require that the policy applies to any request, i.e. it always returns a decision different from
not-applicable. Notably, in this formulation indeterminate is considered as an admissible decision; a
more restrictive formulation could be defined that only accepts decisions permit and deny.

Redundancy. Redundancy among policies means that to enforce the same set of system behaviours some
policies are not needed. Therefore, if we eliminate redundant policies, we can improve performance
of policy evaluation while leaving unchanged the enforced behaviours. Although the concept seems
natural and quite simple, different formalisations, that often lack of precision, have been proposed in the
literature. We follow an approach similar to [14].

Formally, if we let the FACPL policy S be defined as S= alg(P1, . . . ,Pi,P,Pi+1, . . . ,Pn), then the policy
P is redundant with respect to S if the following condition holds

∀ r ∈ Rall : [[alg(P1, . . . ,Pi,P,Pi+1, . . . ,Pn)]]r = [[alg(P1, . . . ,Pi,Pi+1, . . . ,Pn)]]r

In fact, we require that, for any request, the decision returned by S is not affected by the presence of P.
Notably, this property generalises in the obvious way to the case S contains rules instead of policies (thus
P would be a redundant rule) and to the case a target is present in S.

Disjointness. Disjointness among policies means that such policies apply to disjoint sets of behaviours.
Thus, two policies are disjoint if there is no request for which both policies evaluate to permit or deny.
Formally, policies P and P′ are disjoint if the following condition holds

∀ r ∈ Rall : { [[P]]r, [[P′]]r } 6⊆ {permit,deny}

It is worth noticing that disjoint polices can be combined with the assurance that the allowed or forbidden
behaviours enforced by each of them are not in conflict, which simplifies the choice of the combining
algorithm to be used.

Coverage. Coverage among policies means that one of such policies enforce the same decisions as the
other ones for a set of requests of interest. Formally, if Rcov is a set of requests, we say that the policy
P covers the policy P′ if, for each request r ∈ Rcov to which P′ applies, i.e. [[P′]]r ∈ {permit,deny}, P
applies too and returns the same decision. Formally, it is expressed by the following condition

∀ r ∈ Rcov : [[P′]]r ∈ {permit,deny} ⇒ [[P]]r = [[P′]]r



12 On Properties of Policy-Based Specifications

Thus, relatively to the set of requests of interest, P enforces at least the same allowed and forbidden
behaviours as P′. Consequently, if P′ also covers P, then the two policies enforce exactly the same
behaviours relatively to the set of requests of interest.

These structural properties permit to statically reason on the relationships among policies and provide
useful support to system’s designers in developing and maintaining policy-based specifications. One
technique they support is the change-impact analysis [11]. This analysis examines the effect of policy
modifications for discovering unintended consequences of such changes. To be practically effective it
requires that the verification of the previous properties be supported by automatic tools. We further deal
with this issue in the next section.

5 Verification of Properties

The formalisation of security and structural properties presented in Sections 3 and 4 determines the
conditions on attributes stating when a policy enjoys a certain property. To verify such conditions, we
need to take into account the various elements composing a policy. Specifically, the hierarchical structure
of policies and the various elements originating the decisions make this verification cumbersome and
error-prone if not supported by an automatised technique. As an example of the difficulties to address,
we consider the case of verifying two security properties: the no read-up and DAC ones for a read action
by a set of subjects Sub′ on a resource res. Thus, we define various combination approaches for creating
a policy containing Rules (1) and (2), and we study for each approach if the two properties are properly
enforced.

The first combination we propose for the two rules is defined as follows

{permit-overrides
target : equal(resource/id,res) and in(subject/id,Sub′)
policies :

(permit target : equal(action/id,read) and leq(resource/level,subject/level))
(permit target : equal(action/id,read) and in(subject/id, resource/read.ids))}

The chosen combination algorithm is permit-overrides, which seems the natural choice since each al-
lowed behaviour is explicitly authorised. Notably, the policy’s target ensures that the policy exclusively
applies to the considered resource res and to the subset of system’s subjects Sub′.

To verify that this policy enforces the intended properties, we show that all the secure behaviours
are authorised, while the nonsecure ones are forbidden. We consider first the no read-up property. As
formalised in Section 3.2, the secure behaviours correspond to all the requests containing the resource
and subject levels that respect the partial ordering relation. These ones clearly match the target of the first
rule, hence this rule, as well as the permit-overrides algorithm, return permit. The nonsecure behaviours
are instead represented by all the requests containing resource’s and subject’s levels not properly ordered.
In this case, both internal rules do not apply and the permit-overrides algorithm returns not-applicable,
because neither permit nor deny are returned by the rules. However, the nonsecure behaviours should
be evaluated as deny, hence we can conclude that the policy does not properly enforce the no read-up
property. The same also holds for the DAC property.

To fix this first policy, we can replace the permit-overrides algorithm by the deny-unless-permit
one, which ensures that deny is taken as the default decision whenever no rule evaluates to permit. In
this case all the nonsecure behaviours of both properties are properly forbidden. However, as we are
addressing two properties, the secure behaviours are all those ones that are secure, at the same time, for
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both properties. This means that permit must be returned only when the two rules apply at the same time
as well, but this does not happen in the presented policies. In fact, the combining algorithm does not
enforce any form of consensus between the two rules. As a matter of fact, a subject can circumvent the
access control system reading a resource, e.g., only having the correct confidentiality level and not the
discretionary access.

This additional issue can be addressed by adding a new policy layer and requesting a strong consensus
between the rules. The extended policy is thus as follows

{deny-unless-permit
policies :
{strong-consensus
target : equal(resource/id,res) and in(subject/id,Sub′)
policies :
(permit target : equal(action/id,read) and leq(resource/level,subject/level))
(permit target : equal(action/id,read) and in(subject/id, resource/read.ids)) }}

deny-unless-permit is used at top level to ensure that the resulting decisions of the overall policy will be
only permit or deny. In the inner policy, strong-consensus ensures that permit is returned only when
both internal rules apply at the same time. In this case, all secure and nonsecure behaviours of the two
intended properties are properly enforced. Notably, we can achieve the same result by merging the two
rules and avoiding the additional policy layer; however, the modelling approach we present permits to
achieve separation of concerns among rules, which are thus easier to maintain and possibly change.

Verifying that a policy properly enforces a set of properties is not straightforward. This example,
which seems easy enough for being manually checked, shows us that also in case of simple policies
we need an automated verification approach. Specifically, this approach must be capable to take into
account all the aspects of a policy specification, e.g. policy stratification and combining algorithms, and
to exhaustively check all the significant requests representing the possible behaviours. A viable approach
towards an automated verification of security and structural properties is outlined in the next subsection.

5.1 Towards an Automated Verification Approach

Automatising the verification of properties permits to facilitate the analysis of policy-based specifica-
tions. To enable such analysis, we need a formalism that, on the one hand, permits to collapse hierarchi-
cal policies into a single-layered representation and to uniformly represent all policy elements and, on
the other hand, is sufficiently flexible to deal with multiple domain values for attribute assignments. To
this aim, we propose a constraint-based formalism.

Constraints permit to specify satisfaction problems based both on boolean formulae and on formulae
dealing with different theories as, e.g. linear arithmetics. Such kind of formulae are called satisfiability
modulo theories (SMT) formulae. Choosing a SMT-based formalism is advocated also by the relevant
progress made in the development of automatic SMT solvers (e.g., Z3 [21]), which make SMT formulae
to be extensively employed in diverse analysis applications [22]. Of course, the feasibility of the approach
crucially depends on decidability of the satisfiability checks; in other words, the used constrains must be
represented by decidable theories, as e.g. uninterpreted functions and array theories.

To achieve a single-layered representation of policies, we have to provide a translation function from
the language used for writing policies to the constraint-based formalism that preserves the semantics of
the original language. Indeed, since FACPL is equipped with a formal semantics, it has to be exploited



14 On Properties of Policy-Based Specifications

for defining a rigorous encoding. Notably, as the evaluation of a policy can return four possible decisions,
we have to define a different constraint for each of them.

A constraint-based representation of policy-based specifications enables the verifications of both
security and structural properties. Specifically, in the case of security properties, the attribute values
identifying the class of (non)secure requests correspond to assignment assertions in the constraint of
interest (i.e. the one modelling the decision to which the requests should evaluate) and then, by means of
an SMT-solver, it is checked if such constraint is satisfiable. If this happens, it means that the requests of
the class can evaluate, under the assignment model returned by the solver, to the decision modelled by the
constraint. In case of structural properties, we can instead define boolean combinations among the single
constraints of each policy, and then check the satisfiability of the resulting constraint to understand if a
certain property holds. For instance, the disjointness between two policies holds if the constraint resulting
from the implication of the permit (resp., deny) constraints of both policies is not satisfiable.

6 Related Works

Policy-based specifications have recently been the subject of extensive research, both by industry and
academia, in many application areas. In fact, policy languages have been adopted for managing different
aspects of systems’ behaviour, not only access control but also adaptation enforcement and network
management. A large variety of languages for defining access controls has been proposed, and the
more significant ones follow two main specification approaches: rule-based, as e.g. XACML [24] and
Ponder [9], and logic-based, as e.g. ASL [15] and the logical framework presented in [1]. We present
the relevant features of these languages, showing the effectiveness of choosing FACPL as the target
language for studying policies’ properties. Notably, the uniform approach based on attributes presented
in [16] does not provide any evaluable property characterisation, but only an high-level access control
model.

XACML is the most widely-used instantiation of the ABAC approach. It relies on an XML-based
syntax and permits to write policies and access requests. However, XML does not permit compact spec-
ifications and, due to the lack of a formal semantics, an explicit unambiguous formalisation of request’s
evaluation. The use of FACPL permits thus to avoid verbose examples, and to rely on a rigours formal
semantics to formalise properties.

Ponder is instead a strongly-typed language defined in terms of Event-Condition-Action rules. Dif-
ferently from XACML and FACPL, it does not provide any explicit combination strategy to resolve
conflicts. Thus, the presence of conflicts or inconsistency is statically analysed by means of abductive
reasoning techniques [2]. This reasoning generates a refinement for the considered policy. Ponder, on
the one hand, permits to avoid policy hierarchies, but, on the other hand, it does not provide any mod-
ularity and compositionality in the specification of policies. The FACPL-based specification approach
consists instead in basic building rules, that can be appropriately combined to enforce different security
properties, ensuring separation of concerns in the enforced behaviours.

The increasing spread of policy-based specifications has prompted the development of multiple veri-
fication techniques like, e.g., property checking and behavioural characterisations. Such techniques have
been implemented by means of different formalisms, varying from multi-terminal binary decision dia-
grams (MTBDD) to different kinds of logics. We review the more relevant techniques and formalisms.

The change-impact analysis of XACML policies presented in [11] permits to study the consequences
of policy’s modifications. In particular, to verify structural properties among policies by means of auto-
matic tools, this approach relies on a MTBDD-based representation of policies. However, it cannot deal
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with many of the classical combining algorithms, e.g. all the XACML’s ones, and, as outlined in [1], an
SMT-based approach (i.e. the one we are exploring), scales significantly better than the MTBDD one.

The ASL language [15] is a logical framework for the formalisation of access control policies.
Specifically, it enables hierarchisation, conflict resolution, and role- and group-based definitions of access
rights. Furthermore, by means of additional predicates representing a posteriori checks on authorisation
decisions, it permits to easily express various history-dependent properties, e.g. dynamic separation of
duty. Similarly, the framework in [1] permits a logic-based specification of control policies. A policy is
thus a list of constraint assertions that are evaluated by a SMT-based tool, and various structural prop-
erties can be encoded in terms of additional, low-level assertions. The FACPL-based approach permits
instead to abstract from the underlying logical means (that are still used to in the FACPL formal seman-
tics and for the automatised analysis we foster), allowing a better usability for system’s designers of the
properties formalisation.

An additional logic-based analysis is the one presented in [17], which aims at verifying structural
properties of XACML policies. Specifically, it defines a partial encoding of XACML into description
logics and a set of supporting analysis services. However, this approach does not take into account many
combining algorithms and, also, the decisions not-applicable and indeterminate, which are instead useful
in the definition of structural properties. Furthermore, the used reasoning tool suffers the same scalability
issues as the one based on MTBDD.

Finally, the redundancy property has been object of specific intensive studies. In fact, the identifi-
cation of redundant policies and their ‘safe’ elimination increases the evaluation performance of access
control systems. A rigorous formalisation of redundancy is proposed in [14], where an algorithmic ap-
proach for minimising access control policies is proposed and its computational complexity studied.

7 Conclusion

Policy-based specifications are widely used to regulate the behaviour of system’s entities relatively to
the access to shared resources. The policy-based access control, by resorting to the concept of attribute,
is sufficiently expressive to represent in an uniform way all classical access control approaches, varying
from access control list and role-based to discretionary and mandatory ones. Policies permit indeed to de-
fine fine-grained, flexible and context-aware access controls, fostering systems integration, as attributes
can be retrieved from different information systems. To ensure confidentiality and integrity principles,
such policies need to take into account multiple security aspects, e.g., the ones studied by well-known
security models, such as the Bell-LaPadula and Biba ones. However, enforcing in terms of policy-based
specifications the security properties characterising such models is a tricky task. In fact, the hierarchi-
cal structure of policies, the presence of conflict resolution strategies and the intricacies deriving from
the many controls involved do not permit to easily check whether a given security property is properly
enforced. By means of the FACPL policy language, we have provided some specification examples of
a significant set of security properties, and showed under which conditions such properties are prop-
erly enforced. To characterise the relationships with the behaviours that different polices enforce, we
have also formalised, in a uniform way, various properties on the structure of policies. Furthermore,
to effectively support system’s designers in developing and maintaining policy-based specifications, we
outlined a constraint-based approach enabling automated verification of security and structural properties
by means of constraint solver tools.

We conclude by reviewing some additional properties we plan to study in the next future. On the
one hand, to take into account dynamic behaviours of systems, we want to address history-dependent
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security properties, and provide specialised formal analysis techniques. On the other hand, access control
policies can also be used to produce, together with the authorisation decision, additional actions, named
obligations, that can adapt the computing system’s configuration. To reason on obligations, we want to
formalise properties on conflicts and dependencies among them. Further details follow.

History-Dependent Properties. Classical examples of history-dependent properties are dynamic SoD
and Chinese Wall [7]. Dynamic SoD properties correspond to enforcing separation of duty by evalu-
ating not only the current subject’s request, but also the history of actions the subject has previously
performed. Chinese Wall properties correspond instead to an hybrid instantiation of the confidentiality
and integrity principles, where history is used to adapt the access rights granted by the confidentiality
controls. Specifically, it means that a subject is only allowed to access resources which are not in conflict
with any other resource that the subject has already accessed.

Enforcing these properties within policy-based specifications means checking the history of system’s
authorisations. This could be done, e.g., by means of attributes representing the history. These attributes
should in fact collect all the information needed for properly enforcing a considered history-dependent
property, e.g., in case of Chinese Wall, which resources have been already accessed. In order to formally
verify that such properties are enforced, we need to enhance our semantic-based formalisation with an
explicit representation of history. Possible approaches to pursue for achieving this formalisation are those
used in Usage Control [19], i.e. a novel access control model for ensuring continuous authorisation when
an access is in progress.

Obligations. Obligations have been introduced in access control for modeling the need of fulfilling
additional actions in order to gain access. For instance, XACML supports the definition of obligations
and, to allow an access, it requires that all obligations possibly generated by the policy evaluation are
correctly fulfilled. Obligations can be thus used to adapt the computing system’s configuration. However,
these obligations may have conditional requirements on their execution, e.g. conflicts and dependencies,
that have to be taken into account. For instance, an obligation can require to be executed only if another
one has not been already executed. To formalise and analyse properties on obligations, we plan to start
from the representation model of obligation’s features outlined in [4], and instantiate such model with
respect to the FACPL policy language.
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