
Submitted to:

WWV 2015

c© N. Gul

This work is licensed under the

Creative Commons Attribution License.

A Calculus of Mobility and Communication for Ubiquitous

Computing

Nosheen Gul

Department of Computer Science, University of Leicester, England

ng90@le.ac.uk

We propose a Calculus of Mobility and Communication (CMC) for the modelling of mobility, com-

munication and context-awareness in the setting of ubiquitous computing. CMC is an ambient cal-

culus with the in and out capabilities of Cardelli and Gordon’s Mobile Ambients. The calculus has

a new form of global communication similar to that in Milner’s CCS. In CMC an ambient is tagged

with a set of ports that agents executing inside the ambient are allowed to communicate on. It also has

a new context-awareness feature that allows ambients to query their location. We present reduction

semantics and labelled transition system semantics of CMC and prove that the semantics coincide.

A new notion of behavioural equivalence is given by defining capability barbed bisimulation and

congruence which is proved to coincide with barbed bisimulation congruence. The expressiveness of

the calculus is illustrated by two case studies.

1 Introduction

Mark Weiser envisioned [28, 27] that ubiquitous computing provides various computing devices available

throughout the physical setting. Ubiquitous computing devices are distributed and could be mobile, and

interactions among them are concurrent and often depend on the location of the devices. The idea of

context-aware computing has originated in [27]. It enables an application to adapt to the changes in its

environment and location. Recent advancements in technology have made it possible to detect user’s

presence or position, or to detect other entities of interest to the user. Therefore, context-awareness and

location-awareness have become important features of ubiquitous computing environments.

In literature, a number of formalisms and languages have been introduced for distributed and concur-

rent systems. Process algebras are used to model formally concurrent systems. Structural Operational

Semantics (SOS) is given as a standard approach of defining the semantics of a system by means of

transition rules [14, 20]. Several process calculi were developed to model concurrency, communication

and distributed systems, most notably CSP [7], CCS [14] and ACP [1]. These process calculi have no

primitives to describe certain aspects of behaviours of the ubiquitous computing setting, for example

mobility and locations. The idea of mobile code has been formalised by Milner in π-calculus [15]. The

aforementioned process calculi do not represent directly physical mobility of devices and their locations

or surroundings.

The inspiration for our work comes from several mobile ambient and process calculi that have proved

useful in the modelling of mobility, communication and structure of systems. The calculus of Mobile

Ambients, MA for short, [4] is a process calculus for modelling mobile agents over wide-area networks.

In MA the ambients represent mobile, nested, computational structures with local communication. Am-

bients are named terms of the form n[P] where n is a name and P a process.

In smart indoor settings, spatial organisation is considered an important object for providing commu-

nication among various fixed and mobile structures. Despite the advances in the ubiquitous and mobile

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 A Calculus of Mobility and Communication for Ubiquitous Computing

computing, it is fundamental to formally model physical mobility of devices and interactions among

mobile agents that may communicate globally. Communication in such settings could be global, which

means that agents may interact with subagents inside other agents. Moreover, the structures in such set-

tings may be mobile, and may need to have knowledge of their current location and surroundings. In

order to model such attributes of ubiquitous computing, this paper presents a Calculus of Mobility and

Communication (CMC). In CMC, mobility, global communication and location-awareness are consid-

ered as first class entities. According to [4], MA was proposed to model mobility and locations that could

not be modelled directly by other traditional calculi like Milner’s Calculus of Communicating Systems

(CCS), therefore we model locations and mobility as in Mobile Ambients. In MA, ambients may enter

or exit named ambients by their in n and out n capabilities. The ambient’s open capability dissolves

its boundary so that the communication may take place locally. We do not use the open capability in

this paper since we introduce a new mechanism of global communication. CMC aims at adding global

communication as in Milner’s CCS. To achieve this we define ambients as mA[P], where m is the name of

the ambient, A is the set of ports that m is allowed to communicate on, and P is an executing agent. This

helps in modelling the globally communicating mobile agents in the setting of ubiquitous computing.

We develop Structural Operational Semantics for ambients mobility and reuse the CCS rules with

an additional rule to introduce global communication. As in MA, we also show ambients mobility by

means of a reduction semantics. For global communication, in contrast, it would be a challenge to find

simple and intuitive reduction rules since (global) communication can happen via an arbitrary number

of ambients that could be located far-away in the structure of a term, and it depends on whether or

not all these ambients allow the communication. This is however unsound and could derive reductions

matching no corresponding transitions. We also develop a new notion of behavioural equivalence for

our calculus, and formulate the equivalence in terms of α-transitions and observation predicate, inspired

by [4, 11]. Thus, we define barbed bisimulation and congruence, and capability barbed bisimulation

and congruence, we then prove that the respective congruence relations of the two forms of barbs imply

each other. The work on behavioural equivalence is still in progress, and the recent advances in the

behavioural semantics theory of mobile ambients, as in [11, 12], should be useful.

Context-awareness is an essential paradigm of ubiquitous computing environment that makes appli-

cations adaptive with their surroundings, and enables processes to be aware of the setting in which they

are being executed. Therefore, we further extend the syntax of the calculus and add a context-awareness

mechanism by introducing two capabilities to it. The new capability ploc(x).P allows an ambient to ac-

quire the name of its parent, whereas sloc(x).P enquires the sibling’s name of an ambient. This feature

empowers ambients to have knowledge of their current location and surroundings.

The rest of the paper is organised as follows: We introduce our basic calculus, CMCb, in Section 2

where its reduction semantics and labelled transition semantics are given. We show that the two types of

semantics coincide for an appropriate sub-calculus of CMCb. In the same section we define behavioural

equivalence for the calculus. Section 3 presents intelligent hospital case study to illustrate the usefulness

of CMCb. Section 4 extends CMCb to CMC with the ploc(x) and sloc(x) capabilities. We present

operational semantics for the new capabilities and argue that the semantics coincide. In Section 5 we

give a shopping mall case study to illustrate the usefulness of CMC. Section 6 contains conclusions.

2 A Calculus of Mobility and Communication

We introduce the syntax of the basic part of CMC, denoted by CMCb, in Tables 1 and 2. Informally,

CMCb inherits its syntax from MA and CCS. The syntax allows global communication among ambients

N. Gul 3

Names : mA,nB,kC... ∈N

Actions : α ,β , ... ∈ Act = A ∪A ∪{τ}
Variables : x,y, ... ∈X

Processes : P,Q ::= D | C.P | a(z).P | a(x).P
| mA[P] | P+Q | P | Q | (νmA)P
| (ν l)P | P[f]

Capabilities : C ::= x | µ | ε | C.C′

Table 1: Syntax of CMCb

that could be mobile. We assume that A is an infinite set of port names, which is ranged over by a,b,c,

and the set of co-names, denoted by A is ranged over by a,b,c. We set L = A ∪A and let A,B,C
range over it. An infinite set Act comprises all possible actions that an agent can perform and α ,β range

over it. Act also includes τ , which is a single completed action of composite agents. So Act = L ∪{τ},
and the typical subsets of α are A,B. The set of agent constants K is ranged over by D and E , and the

deadlocked agent 0 is a member of K . In our syntax the variable z in a(z).P can be replaced by a value

from a set V , which may contain the capabilities as defined in Table 1.

For the mobility part of CMCb syntax in Table 1, we assume an infinite set of ambient names N

that is ranged over by mA,nB and kC, where A,B,C ⊆A ∪A . We define our ambient as a term mA[P],
where, m is the name of the ambient, A is the set of ports that ambient m is allowed to communicate

on, and P is an executing agent. When ambients allow communication on all visible ports then we shall

write m[P] instead of mA[P]. Other ambient constructs that are inherited from MA are (νm)P, C.P and

C.C′. An ambient restriction (νm)P executes process P with a private ambient named m. In C.P, the

process P cannot start execution until the prefix capability C is performed. The capability µ in Table 2

allows ambients to perform certain actions, namely in and out, whereas C.C′ represents a sequence of

capabilities (path) when input variable represents one or more of these capabilities. The empty path is

represented by ε .

We further borrow the constructs for agent constants, action prefixing, parallel composition, sum-

mation and action restriction from Milner’s CCS or the π-calculus [14, 15]. The agent constant D has

a unique equation of the form D
def
= P where P is an agent that may contain agent constants. The agent

constants can also be defined in terms of each other. a(x) and a(z).P sends or receives a message on port

a and a respectively, and then execute P. The received message can be any value v ∈ V , and is bound

to the variable z in P. Parallel composition is given in terms of a binary operator, P | Q, and summation

is given by the choice operator P+Q that allows either process P or process Q to execute. In (ν l)P the

port labels l or l are restricted in P, where l ∈L . In a relabelling P[f], P is a process with the relabelling

function f applied to its action labels. Finally, we have the set of terms T (Σ,V), where V is the set of

process variables, and T (Σ), the set of closed terms (agents or processes) ranged over by P,Q.

2.1 Reduction Semantics of CMCb

The reduction semantics is formalised by two concepts: the structural congruence relation, ≡, and the

reduction relation→. We follow the definition in [11].

Definition 1. A relation R over processes in a process calculus is contextual, if it is preserved by all the

operators in the process calculus. A relation R over processes in a process calculus is p-contextual w.r.t

a set of operators Op, if it is preserved by all the operators in the set Op.

4 A Calculus of Mobility and Communication for Ubiquitous Computing

Ambient Prefixes : µ ::= in nB | out nB

Action Prefixes : α ::= a(z) | b(z) | τ

Ambient Actions : λ ::= enter nB | move nB | exit nB | µ

Labels : ℓ ::= µ | α | λ | τ

Outcomes : O ::= P | K

Concretions : K ::= (νm̃)〈P〉Q

Table 2: Prefixes and labels

We denote the set of all names occurring free in P by fn(P).

Definition 2. Structural congruence, ≡, over CMCb processes is the least p-contextual equivalence re-

lation w.r.t the set of operators Op1 = {ν , |, [f],nB[],C.,α .}, where C and α are in Tables 1 and 2, that

satisfies the following axioms:

P | Q≡ Q | P (ParComm) A≡ P if A
def
= P (Const)

(P | Q) | R≡ P | (Q | R) (ParAssoc) (νnB)(P | Q)≡ P | (νnB)Q if nB /∈ fn(P) (ResPar)

P | 0≡ P (ZeroPar) (νnB)(mA[P])≡mA[(νnB)P] if n 6= m (ResAmb)
P+Q≡ Q+P (SumComm) (νnB)(νmA)P≡ (νmA)(νnB)P (ResRes)
(P+Q)+R≡ P+(Q+R) (SumAssoc) (νnB)0≡ 0 (ZeroRes)
P+0≡ P (ZeroIdentity) ε .P≡ P (Epsilon)

Definition 3. The reduction relation,→, over CMCb processes is the least p-contextual relation w.r.t the

set of operators Op2 = {ν , |,nB[]} that satisfies the rule and axioms in Table 3.

mA[in nB.P | Q] | nB[R]→ nB[mA[P | Q] | R] (Red In)

nB[mA[out nB.P | Q] | R]→ mA[P | Q] | nB[R] (Red Out)

P≡ Q, Q→ Q′, Q′ ≡ P′⇒ P→ P′ (Red ≡)

Table 3: Reduction axioms and rule for CMCb

The axiom Red In in Table 3 shows how an ambient mA may enter into an ambient nB by the virtue

of its in nB capability. The reduction transforms mA, which is a sibling ambient of nB, into a child of nB.

The axiom Red Out describes emigration of an ambient mA from an ambient nB by performing the out nB

capability. The reduction transforms mA, which is a child of nB, to a sibling of nB.

2.2 Labelled Transition System for CMCb

A labelled transition system (LTS) is a tuple (S,L,{
l
→ : l ∈ L}), where S is a set of states, L is a set

of transition labels, and
l
→ are transition relations, one for each l ∈ L. The LTS for CMCb is given

as follows: The set of processes of CMCb is the set of states, the set of labels α as in Table 2 is the

set of transition labels, and the transition relations
α
→ are defined by Plotkin’s Structural Operational

Semantics (SOS) [20] rules in Tables 4 and 5. In our semantics P
τ
→ Q represents not only binary

communication of processes as in CCS but also mobility of ambients by means of their in nB and out nB

capabilities. In order to model mobility by τ-transitions additional labels and auxiliary terms are used,

N. Gul 5

namely labels λ and concretions K in Table 2. So we will need auxiliary transitions P
λ
→ O, where P is

a process, λ is a label and O represents an outcome in Table 2, which is either a process or concretion

of the form (νm̃)〈P〉Q as introduced by Milner [15] and used by Merro and Hennessy [11]. We adopt

the following convention after [11]. If K is the concretion νm̃〈P〉Q, then νuK stands for ν(um̃)〈P〉Q, if

u ∈ f n(P), otherwise νm̃〈P〉νu(Q). A similar convention is followed for λ -Par in Table 5. We define

K | P′ as the concretion νm̃〈P〉(Q | P′) where using α-conversion if necessary, m̃ is selected in such a

way that f n(P′)∩ m̃ = /0.

(Act)
µ .P

µ
→ P

(Enter)
P

in nB→ P′

mA[P]
enter nB→ 〈mA[P′]〉0

(Co-Enter)
nB[P]

move nB→ 〈P〉0

(τ-In)
P

enter nB→ (ν p̃)〈P′〉P′′ Q
move nB→ (ν q̃)〈Q′〉Q′′

P | Q
τ
→ (ν p̃)(ν q̃)(nB[P′ | Q′] | P′′ | Q′′)

(∗)

(Exit)
P

out nB→ P′

mA[P]
exit nB→ 〈mA[P′]〉0

(τ-Out)
P

exit nB→ (νm̃)〈P′〉P′′

nB[P]
τ
→ (νm̃)(P′ | nB[P′′])

(∗∗)

Table 4: Transition rules for mobility. Conditions (∗) and (∗∗) are defined as follows:

(∗) (f n(P′)∪ f n(P′′))∩ q̃ = (f n(Q′)∪ f n(Q′′))∩ p̃ = /0 and (∗∗) (f n(P′)∪ f n(P′′))∩ m̃ = /0

P
λ
→ O

(λ -Par) (∗)

P | Q
λ
→ O | Q

P
λ
→ O

(λ -Res) (u /∈ f n(λ)) (∗)

(νu)P
λ
→ (νu)O

P
τ
→ P′(τ-Amb)

nA[P]
τ
→ nA[P

′]

P≡Q Q
l
→ Q′ Q′ ≡ P′

(Struct)
P

l
→ P′

Table 5: Transition rules for other operators of CMCb. Condition (∗) says that the definition of λ is

extended to include also a τ .

Transitions P
λ
→ O are not first class transitions; they are only helpful in SOS rules that define τ-

transitions of processes corresponding to the movement by in nB and out nB capabilities.

Communication in CMCb is defined as in CCS, so in addition to the SOS rules in Tables 4 and 5, we

have the SOS rules for CCS as in [14] (also in Appnedix 6) and the following Global-Com rule:

P
α
→ P′(Global-Com) (α 6= τ and if (α = a(x) or α = a(x) for some a) then a ∈ A)

mA[P]
α
→ mA[P

′]

Global-Com allows ambients to communicate globally only on ports a ∈ A. Recall that when ambients

allow communication on all visible channels then we shall write m[P] instead of mA[P].
Next, we discuss some reductions and at the same time explain how auxiliary labels and transitions

are used in defining mobility transitions. We assume mA[in nB.P] | Q | nB[R] for some P, Q and R.

The ambient mA, for some A, has the capability to enter an ambient nB for some B. By Red In axiom

in Table 3 we have,

mA[in nB.P] | Q | nB[R] −→ nB[mA[P] | R] | Q.

6 A Calculus of Mobility and Communication for Ubiquitous Computing

We now derive the τ-transition of mA[in nB.P] | Q | nB[R] by τ-In rule in Table 4. For simplicity, we

assume that there are no private names in Q and R. We have in nB.P
in nB−→ P. When the migration occurs,

we must identify the moving ambient mA, and the agent that is left behind. To model these two agents

we use concretion νm̃〈P〉Q, where P is the agent that moves, while Q is the agent that stays behind,

and m̃ is the set of private names shared by P and Q. We introduce a new action enter nB and have

mA[in nB.P]
enter nB−→ 〈mA[P]〉0. By λ -Par in Table 5 we obtain mA[in nB.P] | Q

enter nB−→ 〈mA[P]〉(0 | Q) ≡
〈mA[P]〉Q.

Next, to achieve the τ-transition there must exist a sibling ambient nB. We define a new action

move nB for nB to complete this interaction. By τ-In we get,

mA[in nB.P] | Q | nB[R]
τ
−→ nB[mA[P] | R] | Q.

After the transition the ambient mA, becomes a child of nB.

Next, we explain emigration capability by considering mA[nB[out mA.P] |Q], for some P and Q where

Q has no private names. The ambient nB may emigrate from mA by its out mA capability. By Red Out we

have,

mA[nB[out mA.P] | Q] → nB[P] | mA[Q].

We derive the τ-transition of mA[nB[out mA.P] |Q] by τ-Out. We define a new action exit mA, and by

Exit in Table 4 we get nB[out mA.P]
exit mA−→ 〈nB[P]〉0. By λ -Par we get nB[out mA.P] | Q

exit mA−→ 〈nB[P]〉Q,

which shows that when this capability is exercised nB[P] moves out, while the process Q remains inside

mA. By τ-Out we have,

mA[nB[out mA.P] | Q]
τ
−→ nB[P] | mA[Q].

After the transition the ambient nB, becomes a sibling of mA.

2.3 Results

In this subsection we show that the LTS semantics (SOS semantics) coincides with the reduction seman-

tics for a sub-calculus T ′ of CMCb that consists of all operators of CMCb apart from the prefixing with

actions (including τ) operators, the choice operator and the relabelling operator.

Since we have developed operational semantics for the mobility part of CMC, therefore we intu-

itively restrict equivalence between the operational semantics to a subset of the calculus, and prove the

soundness and completeness of the semantics. Soundness ensures that for every reduction of a T ′ term

there is a valid τ-transition of the term, and the target of the τ-transition is congruent to the target of the

reduction. Completeness ensures that for every valid τ-transition of a T ′ term there is a valid reduction

of the term, and the targets of the τ-transitions and the reductions are the same.

Theorem 1. (a) ∀P, P′ ∈ T ′. P→ P′ =⇒∃Q ∈ T ′. P
τ
→ Q≡ P′. (b) ∀P, R ∈ T ′. P

τ
→ R =⇒ P→ R.

Proof. By transition induction where we consider cases of reductions or transitions of terms depending

on the structure of the terms. The proof of part (a) is straightforward, whereas to show part (b) a number

of auxiliary lemmas are required, similarly as in [11]. Given a transition P
λ
→ O, where λ is as in Table

2, these lemmas state the structure of terms P and O. For example, for ambient entering capability we

require the following lemmas:

Lemma 1. If P
enter nB→ ν p̃ 〈P′〉P′′ then P ≡ ν p̃ (kA[in nB.P1 | P2] | P3), P′ ≡ kA[P1 | P2] and P′′ ≡ P3, for

some P1,P2,P3, kA with nB 6∈ p̃, where p̃ is a set of private ambient names in P.

N. Gul 7

Lemma 2. If Q
move nB→ ν q̃ 〈Q′〉Q′′ then Q ≡ ν q̃ (nB[Q1] | Q2), Q′ ≡ Q1 and Q′′ ≡ Q2, for some Q1,Q2,

with nB 6∈ q̃, where q̃ is a set of private ambient names in Q.

The detailed proof of Theorem 1 is given in [6].

2.4 Behavioural Semantics

We develop an appropriate notion of behavioural equivalence for CMCb. All processes and context

mentioned in this section are from our calculus CMCb. We formulate the equivalence in terms of α-

transitions (
α
−→), for α ∈ a(z),b(z), in mA,out mA,τ , for all a,b,m,A, and observation predicate as in

[4, 11]. We write P ↓nA
to denote the presence of ambient nA at the top level, in the other words process

P may interact with the environment via nA. We write P ⇓nA
, if after some number of τ-transitions, the

process P exhibits nA at the top level.

Definition 4. (Barbs)

P ↓ nA

def
= P≡ νm̃(nA[P1] | P2), where nA 6∈ m̃ for someP1,P2 and

P ⇓ nA

def
= P

τ̂
⇒ Q and Q ↓nA

for some Q.

Definition 5. (Barb Preserving)

A relation R over processes is said to be barb preserving if P R Q and P ↓nA
implies Q ⇓nA

.

Definition 6. (Context)

A context C [·] is a process with zero or more holes [·]. A hole [·] in a context C is replaced by at most

one occurrence of a process. A context C [·] with a hole [·] replaced by a process P is denoted by C [P].

Definition 7. (Contextual Equivalence)

Processes P, Q are contextual equivalent, denoted by P ≃ Q, if for all contexts C [·] and ambient names

nA, C [P] ↓nA
implies C [Q] ⇓nA

.

Since we are considering weak equivalence, we provide the notion of weak actions as follows. We

write α ∈ Act (recall that τ ∈ Act) . We write⇒ for the reflexive and transitive closure of
τ
→, where

τ
→

specifies exactly the τ-transition.
τ
⇒ specifies at least a τ transition. α̂ is a sequence obtained by deleting

all occurrences of τ actions, note that τ̂ = ε . Furthermore,
τ̂
⇒ is

ε
⇒, an empty sequence of τ-transitions,

and
α̂
⇒ is

α
⇒, for α 6= τ .

We define two forms of barbs; one at ambient level whereas another for ambients capabilities. They

give rise to (a) barbed bisimulation and congruence, and (b) capability barbed bisimulation and congru-

ence. We then show that the respective congruence relations imply each other.

Definition 8. (Barbed Bisimulation and Congruence)

A relation S is a barbed bisimulation, if it is symmetric and if (P,Q) ∈ S then for all α ∈ {a(z),b(z),
in mA,out mA},

- if P
α
→ P′ then Q

α̂
⇒ Q′ and (P′,Q′) ∈ S;

- if P ↓nA
then Q ⇓nA

.

Processes P and Q are barbed bisimilar, P ≈ Q, if (P,Q) ∈ S for some barbed bisimulation S. P and Q

are barbed congruent, P∼= Q, if for all contexts C [·], C [P]≈ C [Q].

Definition 9. We write P ↓β if P
β
−→ P′ for some P′, where β ∈{in nA,out nA,enter nA,move nA,exit nA}.

We write P ⇓β if P
τ∗
−→ P′

β
−→ P′′ for some P′ and P′′.

8 A Calculus of Mobility and Communication for Ubiquitous Computing

Definition 10. (Capability Barbed Bisimulation)

Let L = {in nA,out nA,enter nA,move nA,exit nA}, and let β ∈ L. A relation R is a β -barbed bisimulation,

if R is symmetric and if (P,Q) ∈ R then for all α ∈ {a(z),b(z), in nA,out nA}:

- if P
α
→ P′ then Q

α̂
⇒ Q′ and (P′,Q′) ∈ R;

- if P ↓β then Q ⇓β .

P and Q are β -barbed bisimilar, P ≈β Q, if (P,Q) ∈ R for some β -barbed bisimulation R. P and Q are

barbed congruent, P∼=β Q, if for all contexts C [·], C [P]≈β C [Q].

We now prove that two congruence relations, namely barbed bisimulation congruence and capability

barbed bisimulation congruence imply each other.

Theorem 2. Let P,Q ∈ CMCb. Then, P∼= Q iff P∼=β Q for all nB.

Proof. We consider a case where β = move nB, and show that P ∼= Q implies P ∼=move nB
Q for all P,Q

and nB.

Assume that P∼= Q and P ⇓move nB
, and we will show Q ⇓move nB

. We define a context C1[·] as follows:

C1[·]
def
= νmA([·]) | νa(kC[in nB.out nB.a.0] | a.mA[P]), with a 6∈ B and a ∈C

Global communication is very useful in the definition of context C1[·]. It acts as a guard and the

context may interact with the environment via corresponding guarded ambient if the guard is satisfied.

Before we continue with proof of Theorem 2, we shall need the following lemma.

Lemma 3. For mA and kC fresh in an agent R, R ⇓move nB
iff C1[R] ⇓mA

.

Proof. We show, R ⇓move nB
implies C1[R] ⇓mA

By Definition 9, R ⇓move nB
implies R

τ∗
→ R′

move nB−−−−→ R′′ for some R′,R′′. Since R ⇓move nB
is valid, we

obtain R
τ∗
−→ R′

move nB−−−−→ R′′.

We consider R′
move nB−−−−→R′′. By Lemma 2, if R′

move nB−−−−→ ν r̃〈Q′〉Q′′ then R′≡ ν r̃(nB[R1] |R2) and R′′≡
ν r̃〈Q′〉Q′′, where Q′ ≡ R1 and Q′′ ≡ R2. We now have,

C1[R
′] ≡ C1[ν r̃(nB[R1] | R2)]≡ νmA(ν r̃(nB[R1] | R2)) | νa(kC[in nB.out nB.a.0] | a.mA[P])

Since by (∗) in τ-In in Table 4, the members of r̃ are not free names in νa(kC[in nB.out nB.a.0] | a.mA[P]),
and a 6∈ fn(νmA(ν r̃(nB[R1] | R2))), the process C1[ν r̃(nB[R1] | R2)] executes as follows

τ
−→ νaν r̃(νmA(nB[kC[out nB.a.0] | R1] | R2) | a.mA[P]),

(kC 6= mA and kC 6∈ r̃) and (a 6∈ fn(R2) and r̃∩ fn(P) = /0) (τ-In)
τ
−→ νaν r̃(νmA(nB[R1] | R2 | kC[a.0]) | a.mA[P]) (τ-Out)
τ
−→ νaν r̃(νmA(nB[R1] | R2 | kC[0]) | mA[P]) (Global-Com)

We need to show C1[R]⇓mA
which by our predicate definition, means C1[R]

τ∗
−→C1[R

′] ↓mA
, and C1[R

′] ↓mA

means C1[R
′]≡ νm̃(mA[P1] | P2) for some P1,P2,m̃. When P2≡ νmA(nB[R1] | R2 | kC[0]), mA[P1]≡mA[P]

and m̃≡ νaν r̃, then we obtain C1[R
′]≡ νaν r̃(νmA(nB[R1] |R2 | kC[0]) |mA[P]), which implies C1[R

′] ↓mA
.

Since R
τ∗
−→ R′ we obtain C1[R]

τ∗
−→ C1[R

′]. Since C1[R]
τ∗
−→ C1[R

′] and C1[R
′]↓mA

, we obtain C1[R] ⇓mA
as

required.

N. Gul 9

We now show, C1[R] ⇓mA
implies R ⇓move nB

Since C1[R] ⇓mA
means C1[R]

τ∗
−→ C1[R

′] ↓mA
for some R′, we have

C1[R]≡ νmA(R) | νa(kC[in nB.out nB.a.0] | a.mA[P])

Here, C1[R] may interact with the environment via the ambient mA only if, after some τ-transitions, mA

exists at the top level. Therefore, R
τ∗
−→ R′ ↓nB

and we obtain

νmA(R
′) | νa(kC[in nB.out nB.a.0] | a.mA[P])

Since we define predicate (R′ ↓nB
) as R′ ↓nB

def
= R′ ≡ ν q̃(nB[Q1] | Q2) for some Q1,Q2,and nB 6∈ q̃, we

obtain

νmA(R
′) | νa(kC[in nB.out nB.a.0] | a.mA[P])

τ∗
−→ νmA(R

′) | νa(kC[0] | mA[P]).

Since after a number of τ-transitions we have mA at the top level of context C1, so C1[R
′] may interact

with environment via mA and we obtain C1[R
′] ↓mA

. Since C1[R]
τ∗
−→ C1[R

′] and C1[R
′] ↓mA

, we obtain

C1[R] ⇓mA
.

Since we have R′ ≡ ν q̃(nB[Q1] | Q2), we show
move nB−−−−→ as follows:

Co-Enter
nB[Q1]

move nB−→ 〈nB[Q1]〉0
λ -Par

nB[Q1] | Q2
move nB−→ 〈nB[Q1]〉(0 | Q2)

λ -Res
ν q̃(nB[Q1] | Q2)

move nB−→ ν q̃〈nB[Q1]〉(0 | Q2)≡ ν q̃〈nB[Q1]〉Q2
Struct

ν q̃(nB[Q1] | Q2)
move nB−→ ν q̃〈nB[Q1]〉Q2

Now we return to the proof of Theorem 2. Since P ⇓move nB
we get, by Lemma 3, C1[P] ⇓mA

. Since

P ∼= Q, we obtain C1[P] ∼= C1[Q], for context C1[·]. Then since C1[P] ∼= C1[Q], C1[P] ⇓mA
gives us

C1[Q] ⇓mA
. Finally, by Lemma 3, C1[Q] ⇓mA

implies Q ⇓move nB
as required.

Next, we show the right to left implication, namely P ∼=move nB
Q⇒ P ∼= Q for all P,Q. Assume that

P∼=move nB
Q and P ↓mA

, and we will show Q ⇓mA
. We define the context C2[·] as follows:

C2[·]
def
= νnB([·]) | νa(kC[in mA.out mA.a.0] | a.nB[P]), with a 6∈ A and a ∈C.

Lemma 4. For kC and nB fresh in an agent R, R ⇓mA
iff C1[R] ⇓move nB

.

Proof. Since the proof is very similar to the proof of Lemma 3 it is omitted.

Since P ⇓mA
Lemma 4 gives us C2[P] ⇓move nB

. Since P ∼=move nB
Q, we obtain C2[P] ∼=move nB

C2[Q]
for context C2[·]. Next, since C2[P] ∼=move nB

C2[Q], C2[P] ⇓move nB
gives us C2[Q] ⇓move nB

. Hence, by

Lemma 4, C2[Q] ⇓move nB
implies Q ⇓mA

as required.

Conjecture 1. We conjecture that Theorem 2 will hold for the other capabilities, namely enter nB and

exit nB of CMCb.

10 A Calculus of Mobility and Communication for Ubiquitous Computing

3 Intelligent Hospital Case Study

This case study illustrates the usefulness of CMCb in the given problem domain. Agents’ mobility and

global communication features are modelled in a scenario where services follow mobile ambients, and

server supplies services globally to appropriate device provided that the receiving ambient is at the same

location as the device.

We consider a hospital building and a doctor who moves around the building and helps patients.

While dealing with patients, he may need to use information displayed on screens that are fixed around

the building. We assume that an independent server communicates globally with the doctor and with the

screens around the building. The purpose of this case study is to model services following the doctor

around the building, more specifically to ensure that information is shown only on the screens of the

rooms where the doctor is present.

An ambient k represents the building. The ambient k contains ambients drK and wL which represent

the doctor’s room and the ward respectively. K and L are sets of communication ports, where b,c1 ∈ K

and b,c2 ∈ L. This means that the ambient drK can communicate at least on ports a and c1 and the

ambient wL can communicate at least on ports a and c2. Furthermore, there are two fixed screens scrA1

and scrA2
in drK and wL respectively. A1 and A2 are the sets of communication ports, where c1 ∈ A1 and

c2 ∈ A2, but c1 6∈ A2 and c2 6∈ A1. Finally, the doctor is represented as an ambient dB for some B with

a,b ∈ B.

Initially, the ambient dB is in the doctor’s room drK , he then moves to the ward wL and starts using

services on the screen scrA2
. The graphical representation of our setting is given in Figure 1. The

ambients are represented by boxes, whereas dashed lines represent the communication channels. Next,

we define our agents as follows:

k

s
drK wL

dB scrA1
scrA2

c1

c2

a

b

Figure 1: Intelligent Hospital setting

Agents Server and S are given below, where l is a finite sequence of values, v1,v2, ...,vk, for some k:

Server(v : l)
def
= b(x). if (x = drK then c1(v).Server(l)

else if x = wL then c2(v).Server(l) else Server(v : l))

Server(ε)
def
= 0 S

def
= s[Server(l)]

Agents Screenm and Scrm for m ∈ {1,2}, are defined as follows:

Screenm
def
= cm(x).a(x).Screenm Scrm

def
= scrAm

[Screenm]
The agent ScrAm

receives an input x from the server on cm and outputs x on a. Since a ∈ B, the agent

Doc, defined below, is able to view x via port a.

N. Gul 11

Finally, we define agents Doctor and Doc as follows:

Doctor(p, l)
def
= b(p).a(x).Doctor(p,x : l)

+out p.b(k).in r.b(r).a(x).Doctor(r, l) p,r ∈ {drK ,wL} and r 6= p

Doc
def
= dB[Doctor(drK ,ε)]

We use p to represent the initial location of Doc, here p = drK . When Doc leaves p by performing out p

capability, his new location becomes k. He now may enter r by in r, and send his location to Server. In

this particular situation, r = wL since r 6= p and p = drK .

The Intelligent Hospital system is represented by the parallel composition of the server and the

building, which contains doctor’s room, ward, the doctor and two screens:

S | k[drK [Doc | Scr1] | wL[Scr2]]

For simplicity we assume that the server S sends only a single piece of information, namely l = v : ε

for some v. Initially Doc is in drK and S wants to send the value v to Doc via either Scr1 or Scr2. There

are two possible sequences of execution of the Intelligent Hospital system. These sequences are:

(i)
τb(dr)
−→

τc1(v)−→
τa(v)
−→ (ii)

τout−→
τb(k)
−→

τin−→
τb(w)
−→

τc2(v)−→
τa(v)
−→

In the first sequence, Doc sends its location drK to S on port b, the server in response sends v to Scr1

on port c1, and then Doc views v via port a. These interactions are indicated by appropriate labels that

annotate the τs of this sequence. In the second case, Doc leaves the drK and enters the ward by its out drK

and in wL capabilities. It sends its current location to S on port b after executing every move capability.

The server in response sends v to the Scr2 on port c2, and then the screen displays v to Doc on port a.

4 Adding Context-Awareness

In this section we extend the calculus even further by adding a context-awareness mechanism. In smart

indoor settings, location is considered an important entity for providing communication among various

portable and static structures. We consider location as one of the most typical forms of context, and

propose a location-awareness feature, by introducing new constructs ploc(x) and sloc(x), that query an

ambient’s parent and sibling names respectively.

We add ploc(x) and sloc(x) to CMCb, finally giving our full calculus CMC. The definition of µ in

Table 2 is extended to include further ploc(x) and sloc(x). Also, the definition of λ in Table 2 is extended

to include further auxiliary labels ploc1(z), sloc1(z) and amb nB.

4.1 Reduction Semantics for CMC

The reduction semantics of CMC is given in terms of the structural congruence relation, ≡, and the

reduction relation,→. The axioms for ploc(x) and sloc(x) are given in Table 6.

mA[nB[ploc(x).P | Q] | R]→ mA[nB[P{x← mA} | Q] | R] (Red Ploc)

mA[P] | nB[sloc(x).Q | S]→ mA[P] | nB[Q{x← mA} | S] (Red Sloc)

Table 6: Reduction axioms for ploc and sloc

Structural congruence, ≡, for CMC processes is as in Section 2 where capabilities C include addi-

tionally ploc(x) and sloc(x). The reduction relation, →, for CMC processes is as in Definition 3 except

that it satisfies additionally the axioms in Table 6.

12 A Calculus of Mobility and Communication for Ubiquitous Computing

(Act-Ploc) (z doesn’t appear in P)

ploc(x).P
ploc(z)
−→ P{x← z}

(Ploc1)

nB[P]
ploc1(z)
−→ 〈nB[P]〉0

P
ploc1(z)
−→ ν p̃〈P′〉Q P′

ploc(z)
−→ P′′

(τ-Ploc) (∗∗)

mA[P]
τ
→ (ν p̃)mA[P

′′{z← mA} | Q])

Table 7: SOS rules for ploc. Condition (∗∗) is as in Table 4

4.2 SOS Semantics for ploc and sloc

The SOS rules for ploc(x) and sloc(x) in Tables 7, 8 and 5. As before, we use concretions in our

rules. We illustrate reductions and transitions associated with the ploc(x) capability by considering

mA[nB[ploc(x).P1 | P2] | Q], where nB is a child of mA and P1, P2 and Q are some processes. We as-

sume for simplicity that P2 and Q have no private names. The construct ploc(x) enables nB to find

out the name of its parent (here mA) and pass it to P via x. By the reduction rule Red Ploc we get

mA[nB[ploc(x).P1 | P2] |Q]−→mA[nB[P1{x←mA} | P2] |Q], where P1{x←mA} denotes process P1 with

all occurrences of x replaced by mA.

Now we show how to use τ-Ploc in Table 7. The τ-Ploc rule uses the notion of lookahead as, for

example, in [25]. In order to derive a τ-transition of mA[P] we need to ensure that P contains an ambient

enquiring parent’s name. This is achieved by P
ploc1(z)
−→ ν p̃〈P′〉Q where P′ contains this ambient. The

agent P′ then perform ploc(z) to substitute the parent’s name: P′
ploc(z)
−→ P′′. Hence P′ is used both on the

right-hand side and on the left-hand side of the premises in τ-Ploc, so τ-ploc has a lookahead.

Now, to derive the τ-transition of mA[nB[ploc(x).P1 | P2] | Q] we must identify the ambient enquiring

parent’s name. To achieve this we introduce a new action ploc1(z) and by Ploc1 we obtain nB[ploc(x).P1 |

P2]
ploc1(z)
−→ 〈nB[ploc(x).P1 | P2]〉0. By Par-Ploc1 we have

nB[ploc(x).P1 | P2] | Q
ploc1(z)
−→ 〈nB[ploc(x).P1 | P2]〉(0 | Q), where z 6∈ f n(Q) (A)

Transition A matches the first premise of τ-Ploc for the agent mA[nB[ploc(x).P1 | P2] | Q].
Now, nB[ploc(x).P1 | P2] must be able to perform the capability ploc(x), thus giving the right-hand side

premise of τ-Ploc:

nB[ploc(x).P1 | P2]
ploc(z)
−→ nB[P1{x← z} | P2], where z 6∈ f n(P2) (B)

Since we have A and B, by τ-Ploc we obtain

mA[nB[ploc(x).P1 | P2] | Q]
τ
→ mA[nB[P1{x← z} | P2]{z← mA} | 0 | Q]

≡ mA[nB[P1{x← z} | P2]{z← mA} | Q]
Since z does not appear free in P2 by rules for substitution, the transition is as required: mA[nB[ploc(x).P1 |

P2] | Q]
τ
−→ mA[nB[P1{x← mA} | P2] | Q]

We now consider the correspondence of the reduction semantics and the operational semantics for

CMC. Let T ′′′ be a sub-calculus of CMC that consists of all operators of CMC apart from the prefixing

with actions (including τ) operators, the choice operator and the relabelling operator. We easily have the

soundness part of this correspondence between the two semantics:

Theorem 3. ∀P, P′ ∈ T ′′′. P→ P′ =⇒∃Q ∈ T ′′′. P
τ
→ Q≡ P′.

We conjecture that the completeness part of the correspondence between the operational semantics

and reduction semantics is also valid. The proof relies on several auxiliary lemmas. For example, if

λ = ploc1(z) then the lemma for λ is:

N. Gul 13

(Act-Sloc) (z doesn’t appear in P)

sloc(x).P
sloc(z)
−→ P{x← z}

(Sloc1)

mA[P]
sloc1(z)
−→ 〈mA[P]〉0

(Sib-Amb)

nB[P]
amb nB−→ P

P
amb nB−→ P′(Par-Amb)

P | Q
amb nB−→ P′

P
sloc1(z)
−→ ν p̃〈P′〉P′′′ P′

sloc(z)
−→ P′′ Q

amb nB→ Q′
(τ-Sloc) (∗)

P | Q
τ
→ ν p̃(P′′{z← nB} | P

′′′) | Q

Table 8: SOS rules for sloc. Condition (∗) is as in Table 4

Lemma 5. If P
ploc1(z)
−→ (ν p̃) 〈P′〉P′′′ and P′

ploc(z)
−→ P′′, where variable z does not appear in P, then P ≡

ν p̃(nB[ploc(x).P1 | P2] | P3), P′ ≡ nB[ploc(x).P1 | P2], P′′′ ≡ P3 and P′′ ≡ nB[P1{x← z} | P2] for some P1,

P2, P3, nB with nB 6∈ p̃, z 6∈ f n(P2)∪ f n(P3) and p̃ a set of private ambient names in P.

5 Interactive Shopping Mall Case Study

This case study illustrates the usefulness of global communication, in nB, out nB, and ploc(x) features

of CMC. The shopping mall consists of a number of retail outlets, clients and personal digital assistants

(PDAs). To offer clients a high level of services, there is a server that delivers services to clients on

requests via PDAs which are distributed inside the mall. The tree representation of the shopping mall

setting is given in Figure 2, where the initial setting is given on the left-hand side and the final setting

is on the right hand side. In this figure, the ambient sm is the shopping mall with two retail outlets m

sm

server m n

client pda

a

b

c

sm

server m n

clientpda

Figure 2: Interactive Shopping Mall settings

and n. For simplicity we have only one client and one PDA, represented by the ambients client and pda

respectively, which are inside m.

Scenario: The client wishes to move from her current location m to a target location n inside the mall.

She picks up a pda and sends the two locations to the server and requests for the path from m to n. The

server generates this path as a sequence of capabilities and delivers it to the client via pda.

We define our setting as follows where C′, P′ and S′ are some processes:

νabc (sm[m[client[ploc(x).a(x,n).a(u).u.C′ | pda[a(y1,y2).b(y1,y2).c(z).a(z).P
′]]] | n[]] |

server[b(x1 ,x2).c(path(T,x1,x2)).S
′])

14 A Calculus of Mobility and Communication for Ubiquitous Computing

Here, path(T,x1,x2) is a function that calculates a path between the source node x1 and the target node x2

in a given tree T . The only possible execution sequence from this state is
τploc
−→

τa−→
τb−→

τc−→
τa−→ S′′ for

some S′′. In this sequence client acquires parent’s name by ploc(x) and sends her source and the target

locations to server via a. The server in response calculates the path (m,n) between the two locations and

delivers it back to the client. In this particular case, the path calculated from m to n is out m.in n. Now the

system has the form S′′ ≡ νabc (sm[m[client[out m.in n.C′ | pda[P′]]] | n[]] | server[S′]). After executing

out m.in n the final state of the system becomes νabc (sm[m[] | n[client[C′ | pda[P′]]]] | server[S′]), and

is represented on the right hand side of Figure 2.

6 Conclusion and Related Work

We have proposed CMC for the modelling of mobility, communication and context-awareness in the

setting of ubiquitous computing. The notion of ambients mobility has been modelled by the in nB and out

nB capabilities [4]. A new form of global communication has been introduced in CMC which is similar

to that in Milner’s CCS. Ambient’s name has been tagged with the set of ports which are functioning as

a restriction on global communication, specified at the level of ambients. A labelled transition system

semantics has been developed, where P
τ
→ Q represents not only a binary communication of processes

as in CCS but also the ambients’ mobility steps by means of their in nB and out nB capabilities. This has

been achieved by additional labels and specialised transitions from processes to the so-called outcomes

which are either processes or concretions.

Recently, a number of variants of MA have been introduced. Boxed Ambients (BA) [2] inherits

mobility primitives, namely the in and out capabilities from Mobile Ambients and introduce a direct

communication method between parent and child. Channel Ambient calculus (CA) [19] is a variant of

Boxed Ambients. In CA, channels are defined as a first class objects and the communication is either

between parent and child or between siblings. To the best of our knowledge, the ambient calculi do not

support a direct interaction of an agent with a subagent inside another agent. Communication can only

happen between the two adjacent agents, namely communication between parent and child or between

siblings. CMC has introduced a new form of global communication by defining ambients as mA[P],
where m is the name of the ambient, A is the set of ports that m is allowed to communicate on, and P is

an executing agent.

Poslad in [21] addressed a number of theoretical concepts in the context of ubiquitous computing.

In ubiquitous computing setting computations could be mobile and context-aware as, for example, in

[18, 22]. Satoh has researched spatial organisation of systems [23, 24] and concluded that technolog-

ical advancements have enabled computing devices to become aware of their surroundings. Location-

awareness has turned out to be useful in many applications, in particular, in determining position, nav-

igation, tracking, and monitoring of ubiquitous computing devices. The notion of bigraph has been

introduced by Milner in [17] with the idea of presenting two independent structures on the same set of

nodes. A bigraph is a mathematical structure consisting of a place graph and a link graph with common

nodes. Process calculi and behavioural equivalences have led to an approach in bigraph theory somewhat

different from the well-known tradition of graph rewriting [16]. Leonhardt [9] classified location mod-

els into geometric and symbolic models. In geometric models locations are represented as coordinates

systems, whereas symbolic location models use the notion of place and labelling the locations. We use

the notion of place to model location, and represent the structure of our system by a hierarchical space

tree. The nodes represent the places, objects or computing devices, whereas the edges represent the con-

tainment relations between objects. Each node or object is represented by named ambient, which may

N. Gul 15

contain nested ambients inside, as in [4].

A Calculus of Context Aware Ambients (CCA) [5] describes the context-awareness requirements of

the mobile systems. It introduces the notion of context expression that constraints the capabilities. We

also add a context-awareness mechanism to our calculus by introducing two capabilities to it. The new

capability ploc(x).P allows an ambient to acquire the name of its parent and pass it as x to P, whereas

sloc(x).P enquires the sibling’s name of an ambient. Conversation Calculus [26, 3] is designed for ex-

pressing and analysing service based systems. It proposes a spatial communication topology where

conversation contexts are used as message exchange patterns. The construct here(x) that allows access to

the conversation medium in Conversation Calculus is similar to the ploc(x) and sloc(x) capabilities of our

calculus. These capabilities are not precisely used for only communication, whereas in Conversation Cal-

culus conversation contexts are proposed as communication medium that controls information sharing

among processes. Sessions [8] introduce a communication context among various partners to exchange

messages based on previously agreed scheme, and sessions of specific patterns are introduced to ex-

press communication primitives. In CMC, we have modelled physical contexts and have intuitively used

ambients to represent the structures. The systematic addition of context-awareness primitives smoothly

increases the expressiveness power of the calculus.

In past few years, several operational semantics have been developed for MA and its variants as, for

example, in [11, 13, 12]. The authors in [11] introduce a labelled transition system based operational

semantics, and a labelled bisimulation equivalence which is proved to coincide with reduction barbed

congruence. We also develop a labelled transition semantics and prove that the semantics coincides with

the standard reduction semantics. Our labelled transition semantics is inspired by that in [11]. The main

difference is that we do not use the co-capabilities, hence preserving the standard MA semantics. We

have defined barbed bisimulation and congruence, and capability barbed bisimulation and congruence

and have showed that the respective congruence relations of the two forms of barbs coincide. The notion

of behavioural equivalence and the proof method for establishing the equivalence is inspired by that in

[11]. The authors in [11], use co-actions and passwords that help them in proving their results, whereas

the use of global communication in CMC is fundamental in proving the results. The expressiveness and

usefulness of the calculus has been illustrated by presenting intelligent hospital and interactive shopping

mall case studies, where the relevant constructs are used to model various features of the calculus.

References

[1] Bergstra, J. A., and Klop, J. W. (1984): Process Algebra for Synchronous Communication. Information and

Control 60(1-3), pp. 109–137. Available at http://dx.doi.org/10.1016/S0019-9958(84)80025-X.

[2] Bugliesi, M., Castagna, G. and Crafa, S (2004): Access control for mobile agents: The calculus of boxed

ambients. ACM Transactions on Programming Languages and Systems 26(1), pp. 57–124. Available at

http://doi.acm.org/10.1145/963778.963781.

[3] Caires, L. and Vieira, H. T. (2010): Analysis of Service Oriented Software Systems with the Conversation

Calculus. Lecture Notes in Computer Science, Springer, pp. 6–33.

[4] Cardelli, L, Gordon, Andrew D (2000): Mobile ambients. Theoretical Computer Science 240(1), pp. 177–

213. Available at http://dx.doi.org/10.1016/S0304-3975(99)00231-5.

[5] François S., Cau, A. and Zedan, H. (2011): The Calculus of Context-aware Ambients. J. Comput. Syst. Sci.

77(4), pp. 597–620.

[6] Gul, N.: http://www.cs.le.ac.uk/people/ng90/proofs.

[7] Hoare, C. A. R. (1985): Communicating Sequential Processes. Prentice-Hall.

http://dx.doi.org/10.1016/S0019-9958(84)80025-X
http://doi.acm.org/10.1145/963778.963781
http://dx.doi.org/10.1016/S0304-3975(99)00231-5
http://www.cs.le.ac.uk/people/ng90/proofs

16 A Calculus of Mobility and Communication for Ubiquitous Computing

[8] Honda, K. and Vasconcelos, V. T. and Kubo, M. (1998): Language Primitives and Type Discipline for Struc-

tured Communication-Based Programming. In: Programming Languages and Systems, Lecture Notes in

Computer Science 1381, Springer, pp. 122–138, doi:10.1007/BFb0053567.

[9] Leonhardt, U. (1998): Supporting Location-Awareness in Open Distributed Systems. Ph.D. thesis, Imperial

College London.

[10] Merro, M. and Hennessy, M. (2002): Bisimulation congruences in safe ambients. In: Principles of Program-

ming Languages, ACM, pp. 71–80.

[11] Merro, M. and Hennessy, M. (2006): A bisimulation-based semantic theory of Safe Ambients.

ACM Transantions on Programming Languages and Systems 28(2), pp. 290–330. Available at

http://doi.acm.org/10.1145/1119479.1119482.

[12] Merro, M. and Nardelli, F. Z. (2003): Bisimulation Proof Methods for Mobile Ambients.

In: ICALP, Lecture Notes in Computer Science, Springer, pp. 584–598. Available at

http://dx.doi.org/10.1007/3-540-45061-0_47.

[13] Merro, M. and Nardelli, F. Z. (2005): Behavioral theory for mobile ambients. Journal of ACM 52(6), pp.

961–1023. Available at http://doi.acm.org/10.1145/1101821.1101825.

[14] Milner, R (1989): Communication and Concurrency. Prentice Hall Europe.

[15] Milner, R (1999): Communicating and Mobile Systems: The π-calculus. Cambridge University Press.

[16] Milner, R. (2008): Bigraphs and Their Algebra. Electronic Notes Theoratical Computer Science 209, pp.

5–19.

[17] Milner, R (2009): The Space and Motion of Communicating Agents. Cambridge University Press.

[18] Olaru, A. and Gratie, C. (2011): Agent-Based, Context-Aware Information Sharing for Ambient In-

telligence. International Journal on Artificial Intelligence Tools 20(6), pp. 985–1000. Available at

http://dx.doi.org/10.1142/S0218213011000498.

[19] Phillips, A., Yoshida, N. and Eisenbach, S (2004): A Distributed Abstract Machine for Boxed Ambient Cal-

culi. In: Programming Languages and Systems, Lecture Notes in Computer Science 2986, Springer, pp.

155–170. Available at http://dx.doi.org/10.1007/978-3-540-24725-8_12.

[20] Plotkin, G. D (2004): A structural approach to operational semantics. Journal of Logic and Algebraic

Programming 60-61, pp. 17–139.

[21] Posland, S (2009): Ubiquitous Computing: Smart Devices, Environments and Interactions, 1st edition. Wiley.

[22] Ranganathan, A. and Campbell, A. H. (2003): An infrastructure for context-awareness based

on first order logic. Personal and Ubiquitous Computing 7(6), pp. 353–364. Available at

http://dx.doi.org/10.1007/s00779-003-0251-x.

[23] Satoh, I (2005): A location model for pervasive computing environments. In: Pervasive Computing and

Communications, IEEE International Conference on, IEEE Computer Society, pp. 215–224.

[24] Satoh, I (2005): A Spatial Model for Ubiquitous Computing Services. In: IEICE Transactions on Communi-

cations, E88-B, pp. 923–931.

[25] Ulidowski, I. (1992): Equivalences on Observable Processes. In: Proceedings of the Seventh Annual Sym-

posium on Logic in Computer Science, Santa Cruz, California, USA, June 22-25, 1992, IEEE Computer

Society, pp. 148–159. Available at http://dx.doi.org/10.1109/LICS.1992.185529.

[26] Vieira, H. T., Caires, L. and Seco, J. C. (2008): The Conversation Calculus: A Model of Service-Oriented

Computation. Lecture Notes in Computer Science 4960, Springer, pp. 269–283.

[27] Weiser, M (1991): The computer for the 21st century. Scientific American. Available at

http://www.ubiq.com/hypertext/weiser/SciAmDraft3.html.

[28] Weiser, M (1993): Some Computer Science Issues in Ubiquitous Computing. In: Communications of the

ACM, 36, pp. 75–84.

http://dx.doi.org/10.1007/BFb0053567
http://doi.acm.org/10.1145/1119479.1119482
http://dx.doi.org/10.1007/3-540-45061-0_47
http://doi.acm.org/10.1145/1101821.1101825
http://dx.doi.org/10.1142/S0218213011000498
http://dx.doi.org/10.1007/978-3-540-24725-8_12
http://dx.doi.org/10.1007/s00779-003-0251-x
http://dx.doi.org/10.1109/LICS.1992.185529
http://www.ubiq.com/hypertext/weiser/SciAmDraft3.html

A SOS Rules for communication

(Input) (v ∈V)

a(z).P
a(v)
→ P{v/z}

(Output)

a(x).P
a(x)
→ P

P
α
→ P′(Res-Act) (a /∈ fn(α))

(νa)P
α
→ (νa)P′

(Sum)
P

α
→ P′

P+Q
α
→ P′

P
a(x)
→ P′ Q

a(x)
→ Q′

(Par-Com)
P | Q

τ
→ P′ | Q′

(Par-Act)
P

α
→ P′

P | Q
α
→ P′ | Q

(Rel)
P

α
→ P′

P[f]
f (α)
→ P′[f]

(Const)
P

α
→ P′

A
α
→ P′

(A
def
= P)

P≡ Q Q
l
→ Q′ Q′ ≡ P′

(Struct)
P

l
→ P′

	Introduction
	A Calculus of Mobility and Communication
	Reduction Semantics of CMCb
	Labelled Transition System for CMCb
	Results
	Behavioural Semantics

	Intelligent Hospital Case Study
	Adding Context-Awareness
	Reduction Semantics for CMC
	SOS Semantics for ploc and sloc

	Interactive Shopping Mall Case Study
	Conclusion and Related Work
	Appendix SOS Rules for communication

